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I. INTRODUCTION 

The dist.ort,ion functions introduced by Collins’ are important functions for a 

lat,tice. Just. as t.he betatron functions /3= and p, that specify the elliptic evelopes of 

betatron oscillat,ions in both transverse planes, the distortion functions specify the 

deviations from t,hese ellipses. Knowing the distort,ion funct,ions, the nonlinear smears 

as well as betatron tunes dependence on amplitudes can be computed. Inversely, if 

the distortion functions can be controlled in the design of the lattice or placement of 

higher multipoles, the nonlinearity of the lattice can be very much reduced. 

Take the contribution of the sextupoles a,s an example, each pair of distortion 

functions (B,,A,) can be computed using the following three criteria. (1) In the 

region between two sextupoles, (B,: A,) rotates like a vector by the angle a. (2) On 

pasing a ‘thin’ sextupole, B is continuous while A jumps by an unount m, which 

may be s/4 or s/4. (3) (B,:A,) h 7 t a\e o close after one revolution of the ring. In 

t,he above, t,hr sextupole strengths s and s are defined as 

where 
B”e 

S=lim 2 1 1 1-0 2(Bp) ’ 

(1.1) 

(1.2) 

with Biz the local gradient of sextupole field, ! it,s length, and (Bp) the magnetic 

rigidity of t,he particle. The angle a stands for either, I$=, 3$,, 21jly 4~ &, or 2& ~ &. 

However, this derivat,ion includes an aprioriassumption of the closure (or periodicity) 

for the distortion functions. 

An alt,ernative derivation stats from the Hamiltonian. We solve for the amplitudes 

of betatron oscillations in both transverse pla.nes, pick out the functions that are 

periodic and amplitude independent and called them the distortion functions. This 

approxh wa,s performed in Refs. 2, 3, 4, and 5. There, we expanded the Hamiltonian 

into harmonics a,nd then resummed the harmonics a,i the end. The expa,nsion into 

harmonics is only necessary if we wish to identify t,he harmful harmonics, which are 

usually only a fee, and a,void them by suitable arrangement of the higher multipoles. 

If vse UC JUS I” eres ? I” t t, t .d the derivation of the betatron amplitudes in terms of the 

distortion functions, the expa,nsion and resummation are in fxt unnecessary. The 
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derivation will become simpler and more elegant. Such approach has already been 

used in the analytic computation of the horizontal smea~r.” 

II. DERVATION 

iVie demonstrate here the derivation including only normal sextupoles as nonlinear 

elements. The Hamilt,onian is 

HI = ;[P,‘+ K,X*] + ;;I’; + KyYa] + &(X3 - 3X1”) , (2.1) 

where P, and Py are the canonical momenta conjugate to the horizontal and vertical 

displacements X and Y, K,(s) and KY( ) s are proportional to the restoring forces due 

to t,he ring’s curva,ture a,nd the field gradients of the qua,drupoles. In the Floquet 

space, this Hamiltonian becomes 

where R is the average radius of the ring, 6’ defined as path length along designed orbit 

divided by R ha been chosen as the independent variable, and PO is some arbitrary 

reference value for the bet&on functions. 

This Huniltonian is now solved exactly to zero order in sextupole strength by 

canonical tmnsformation to the wtion-angle variables I,, a, and I,, aY. The gener- 

ding funct.ion 

G(%Pz,a,,P,;fl) = c ; PoP2cotlQ”Jq t %I 
u=z,y 

(2.3) 

is used to obt,airl the transformation (u = z or y) 

i 

u = wu80)1’2 cos[Qu(0) i- a,] , 

POPU = -(2~u~~)1izsin[&,(0) + a,] , 
(2.4) 

where Q,(d) = &(8) -~ r/,0 and L%JL = du/d&. After the transformation, thr new 
Hamiltonian becomes 

Hs = vzl, t vyIy t AH3 , (2.5) 
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where v, and vy are the unpert,urbed horizont,al and vertical betatron t,unes and t,he 

sextupole contribution is included in 

AH, = (21~~~)“/zG$$ [cos 3(Q, t G) t 3 cos(Qz t CL)] 

3. ‘42&, t Qz t 2a, + as) t cos(2Qy - Q= + 2a, ~ a.)] (2.6) 

The equations of motion for SI, and 61v,, the devia,tions due to sextupoles, are: 

d61, 
~ = -‘t/ = (2Jw%)3’2~[sin3(Qz + a,) + sin(Q, - a1)] d8 z 

+ sin@Q, t Qz i- 2% t a.) ~ sin(2Q, - Qr + 2a, ~ az)] (2.7) 

x [sin(2Q, + Q, t 25, + a,) + sin(2Q, - Q, + 2a,, ~ a2)] (2.8) 

We need l,o solve Eqs. (2.7) and (2.8) up to first order in sext,upole strength. For this, 

we only need the zero-order dependences of a, and a, on 6’, which are simply 

{ 

a, = KJ + Pz , 

ay = uye i- py , 
(2.9) 

where 9, and py a,re initial b&&on phaes. Now, &is. (2.7) and (2.8) can be 

integrated easily. For simplicity, let us consider only the first term in the squared 

brackets of Eq. (2.7). Noting tha,t Qz is periodic in 8, the integration gives 

61,(d) x ~ ~“+2T ds’(21,Li.)“:‘,~jfOs(~~~~~ri,i 
s 

(2.10) 

Since the sextupoles are assumed to be ‘thin’, in terms of the sextupole strengths 

defined in Eq. (1.1): we an rewrite Eq. (2.10) as 

&,4,((J) = -““-$- .;~?!?@;;;,;v-““! , 
* 

(2.11) 
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v-here the summation over k is over each sextupole around the ring loca.ted at the 

‘modified’ phase advance Ijl& which is related to the usual periodic Floquet phase 

advance gzk by 

$v, = WdT 

1’ 

if ek 2 0 
(2.12) 

*=k t 2x if Bk < 0 , 

a,nd 

-4 = &% 1 4 = @LO” (2.13) 

are the bet&ran anplitudes in the horizontal and vertical plane. The instnntanzous 

horizontal bet&on phase at posit,ion 0 is 

d*(q = A(@) + ioz 

1Vith this the disort,ion of the amplitude becomes 

6&(O) = dS[A, sin c$= - B, cos r+&] , 

(2.14) 

(2.15) 

with 
B,( 0) = T “,” E?L&;;IM;) ::~??I : 
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Al(ei _ c ~~4~k~=(~)b~41 
k 4 2sinxv, ’ 

(2.16) 

(2.17) 

Here, B1(0) and Al(O) are periodic in 8 and are amplitude independent. They are 

just one set of distortion functions. It is easy to verify that all the three crikria, listed 

in Sec. 1 are s&&d. In the same way, all the other four sets of distort,ion functions 

can be derived easily. For example, the dist,ortion functions corresponding to the sum 

and difference resonances are 

B=(O) = F 2, E!GLs~~~::~?L , 

Sk sin[&-G+(B)- xlli~] 
A*(B) = T 4---j-;T”y---~~~-- , 

* 

(2.18) 

(2.19) 

where Y+ = 2v, L!Z u, and $$ = 27& f $j, with $& defined similar t,o Eq. (2.12). If 

we wish, we could remove the prirm on $ and write the a~rgument of the cosine of 

Eq. (2.18) or the sine of Eq. (2.19) wrd rewrite it instead as 

‘47th ~ +Jq * l&k - $h(q Xl’+ 

Thr way that it was written in Ikfs. 2, 3, and 4 is incorrect. 

(2.20) 
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